靶向类风湿关节炎细胞因子与信号通路的治疗药物进展

孟梅, 岳正刚, 周瑞, 王昌利, 宋忠兴, 唐志书

中国药学杂志 ›› 2021, Vol. 56 ›› Issue (8) : 620-625.

PDF(1047 KB)
PDF(1047 KB)
中国药学杂志 ›› 2021, Vol. 56 ›› Issue (8) : 620-625. DOI: 10.11669/cpj.2021.08.002
综述

靶向类风湿关节炎细胞因子与信号通路的治疗药物进展

  • 孟梅, 岳正刚, 周瑞*, 王昌利*, 宋忠兴, 唐志书
作者信息 +

Progress in Therapeutic Drugs Targeting Rheumatoid Arthritis Cytokines and Signaling Pathways

  • MENG Mei, YUE Zheng-gang, ZHOU Rui*, WANG Chang-li*, SONG Zhong-xing, TANG Zhi-shu
Author information +
文章历史 +

摘要

类风湿关节炎(rheumatoid arthritis,RA)是全球重大难治疾病之一,严重危害人类健康。RA病理机制复杂,仍缺乏有效的治疗药物。目前认为导致RA患者炎症反应以及免疫功能紊乱主要由炎性细胞因子的级联放大及Janus激酶-信号传导子和转录活化子(Janus kinase-signal transducers and activators of transcription,JAK-STAT)信号通路的激活引起。其中白细胞介素(interleukin,IL)-6和粒细胞-巨噬细胞集落刺激因子(granulocyte-macrophage colony stimulating factor,GM-CSF)在RA病理进展中发挥重要作用。笔者通过综述近年来IL-6、GM-CSF以及JAK-STAT信号通路与RA发病机制的关联性,以及以IL-6、GM-CSF为靶点的生物制剂与以JAK-STAT信号通路为靶点的小分子抑制剂的研究进展,为RA的治疗研究提供理论参考。

Abstract

Rheumatoid arthritis (RA) is one of the world′s major intractable diseases, which seriously endangers human health. Due to the complex pathological mechanism of RA, there is still a lack of effective therapeutic drugs. Currently, it is recognized that inflammatory response and immune dysfunction in RA are mainly caused by initiation and amplification of the inflammatory cascade and activation of JAK/STAT signaling pathway. Interleukin (IL)-6 and granulocyte-macrophage colony stimulating factor (GM-CSF) play an important role in the pathogenesis of RA. In this paper, the correlation between IL-6, GM-CSF and JAK-STAT signaling pathways and the pathogenesis of RA are elucidated, as well as the recent research progress on biological agents targeting IL-6 and GM-CSF and small molecule inhibitors targeting JAK-STAT signaling pathway are reviewed, which offering valuable theoretical reference to treat RA more effectively. These research progress could provide a theoretical reference for the treatment of RA.

关键词

类风湿关节炎 / 药物靶点 / 作用机制 / 白细胞介素-6 / 粒细胞-巨噬细胞集落刺激因子 / 生物制剂 / 小分子抑制剂

Key words

rheumatoid arthritis / drug target / mechanism / IL-6 / GM-CSF / biological agent / small-molecule inhibitor

引用本文

导出引用
孟梅, 岳正刚, 周瑞, 王昌利, 宋忠兴, 唐志书. 靶向类风湿关节炎细胞因子与信号通路的治疗药物进展[J]. 中国药学杂志, 2021, 56(8): 620-625 https://doi.org/10.11669/cpj.2021.08.002
MENG Mei, YUE Zheng-gang, ZHOU Rui, WANG Chang-li, SONG Zhong-xing, TANG Zhi-shu. Progress in Therapeutic Drugs Targeting Rheumatoid Arthritis Cytokines and Signaling Pathways[J]. Chinese Pharmaceutical Journal, 2021, 56(8): 620-625 https://doi.org/10.11669/cpj.2021.08.002
中图分类号: R97   

参考文献

[1] SMOLEN J S, ALETAHA D, MCINNES I B. Rheumatoid arthritis[J]. Lancet, 2016, 388(10055):2023-2038.
[2] HOLMQVIST M, LJUNG L, ASKLING J. Mortality following new-onset rheumatoid arthritis: has modern rheumatology had an impact?[J]. Ann Rheum Dis, 2018, 77(1):85-91.
[3] WANG J, ZHAO Q J, ZHUO X B, et al. Research progress therapeutic drugs for rheumatoid arthritis[J]. J Pharm Pract(药学实践杂志),2019,37(6):485-490.
[4] SELMI C, KON E, DE SANTIS M, et al. How advances in personalized medicine will change rheumatology[J]. Per Med, 2018, 15(2):75-78.
[5] SIMSEK I . TNF inhibitors for rheumatoid arthritis-a year in review[J]. Bull NYU Hosp Joint Dis, 2011, 69(3):220-224.
[6] FERGUSON F M, GRAY N S. Kinase inhibitors: the road ahead[J]. Nat Rev Drug Discov, 2018, 17(5):353-377.
[7] PANDOLFI F, FRANZA L, CARUSI V, et al. Interleukin-6 in rheumatoid arthritis[J]. Int J Mol Sci, 2020, 21(15):1-13.
[8] ROSE-JOHN S. IL-6 trans-signaling via the soluble il-6 receptor: importance for the pro-inflammatory activities of IL-6[J]. Int J Biol Sci, 2012, 8(9):1237-1247.
[9] NARAZAKI M, TANAKA T, KISHIMOTO. The role and therapeutic targeting of IL-6 in rheumatoid arthritis[J]. Expert Rev Clin Immunol, 2017, 13(6):535-551.
[10] BUSTAMANTE M F, GARCIA-CARBONELL R, WHISENANT K D, et al. Fibroblast-like synoviocyte metabolism in the pathogenesis of rheumatoid arthritis[J]. Arthritis Res Ther, 2017, 19(1):1-12.
[11] MIHARA M, KOTOH M, NISHIMOTO N, et al. Humanized antibody to human interleukin-6 receptor inhibits the development of collagen arthritis in cynomolgus monkeys[J]. Clin Immunol,2001, 98(3):319-326.
[12] NAKAHARA H, SONG J, SUGIMOTO M, et al. Anti-interleukin-6 receptor antibody therapy reduces vascular endothelial growth factor production in rheumatoid arthritis[J]. Arthritis Rheum, 2003, 48(6):1521-1529.
[13] KAGARI T, DOI H, SHIMOZATO T. The importance of IL-1 beta and TNF-alpha, and the noninvolvement of IL-6, in the development of monoclonal antibody-induced arthritis[J]. J Immunol, 2002, 169(3):1459-1466.
[14] FINZEL S, KRAUS S, FIGUEIRED C P, et al. Comparison of the effects of tocilizumab monotherapy and adalimumab in combination with methotrexate on bone erosion repair in rheumatoid arthritis[J]. Ann Rheum Dis, 2019, 78(9):1186-1191.
[15] OGATA A, KATO Y, HIGA S, et al. IL-6 inhibitor for the treatment of rheumatoid arthritis: a comprehensive review[J]. Mod Rheumatol, 2018, 29(2):1-29.
[16] BURMESTER G R, LIN Y, PATEL R, et al. Efficacy and safety of sarilumab monotherapy versus adalimumab monotherapy for the treatment of patients with active rheumatoid arthritis (MON-ARCH):a randomised, double-blind, parallel-group phase III trial[J]. Ann Rheum Dis, 2017, 76(5):840-847.
[17] VAN ROY M, VERVERKEN C, BEIRNAERT E, et al. The preclinical pharmacology of the high affinity anti-IL-6R Nanobody? ALX-0061 supports its clinical development in rheumatoid arthritis[J]. Arthritis Res Ther, 2015, 17(1):1-16.
[18] SUN Y, WITTENBERG G, CHEN G, et al. 300. Improvement in measures of depressed mood and anhedonia in two randomized, placebo-controlled phase Ⅲ studies of sirukumab, a human anti-interleukin-6 antibody, in patients with rheumatoid arthritis[J]. Biol Psychiatry, 2017, 81(10):S123.
[19] WEINBLATT M E, MEASE P, MYSLER E, et al. The efficacy and safety of subcutaneous clazakizumab in patients with moderate-to-severe rheumatoid arthritis and an inadequate response to methotrexate: results from a multinational, phase IIb, randomized, double-blind, placebo/active-controlled, dose-ranging study[J]. Arthritis Rheumatol, 2015, 67(10):2591-2600.
[20] GENOVESE M C, FLEISCHMANN R, FURST D, et al. Efficacy and safety of olokizumab in patients with rheumatoid arthritis with an inadequate response to tnf inhibitor therapy: outcomes of a randomised phase iib study[J]. Ann Rheum Dis, 2014, 73(9):1607-1615.
[21] DOUGAN M, DRANOFF G, DOUGAN S K. GM-CSF, IL-3, and IL-5 family of cytokines: regulators of inflammation[J]. Immunity, 2019, 50(4):796-811.
[22] HANSEN G, HERCUS T R, MCCLURE B J, et al. The structure of the GM-CSF receptor complex reveals a distinct mode of cytokine receptor activation[J]. Cell, 2008, 134(3):496-507.
[23] HAMILTON J A. Colony-stimulating factors in infammation and autoimmunity[J]. Nat Rev Immunol, 2008, 8(7):533-544.
[24] FLEETWOOD A J, LAWRENCE T, HAMILTON J A, et al. Granulocyte-macrophage colony-stimulating factor (CSF) and macrophage CSF-dependent macrophage phenotypes display differences in cytokine profles and transcription factor activities: implications for CSF blockade in infammation[J]. J Immunol, 2007, 178(8):5245-5252.
[25] HERCUS T R, DHAGAT U, KAN W L, et al. Signalling by the betac family of cytokines[J]. Cytokine Growth Factor Rev, 2013, 24(3):189-201.
[26] EL-BEHI M, CIRIC B, DAI H, et al. The encephalitogenicity of T(H)17 cells is dependent on IL-1 and IL-23-induced production of the cytokine GM-CSF[J]. Nat Immunol,2011, 12(6):568-575.
[27] BURMESTER G R, WEINBLATT M E, MCINNES I B, et al. Efficacy and safety of mavrilimumab in subjects with rheumatoid arthritis[J]. Ann Rheum Dis, 2013, 72(9):1445-1452.
[28] BURMESTER G R, MCINNES I B, KREMER J M, et al. Mavrilimumab, a fully human granulocyte-macrophage colony-stimulating factor receptor α monoclonal antibody: long-term safety and efficacy in patients with rheumatoid arthritis[J]. Arthritis Rheumatol, 2018, 70(5):679-689.
[29] CROTTI C, AGAPE E, BECCIOLINI A, et al. Targeting granulocyte-monocyte colony-stimulating factor signaling in rheumatoid arthritis: future prospects[J]. Drugs, 2019, 79(16):1741-1755.
[30] KIVITZ A, HAZAN L, HOFFMAN K, et al. FRI0209MORAb-022, an anti-granulocyte macrophage-colony stimulating factor (GM-CSF) monoclonal antibody (MAB): results of the first study in patients with mild-to-moderate rheumatoid arthritis (RA)[J]. Ann Rheum Dis, 2016, 75(suppl 2):507.
[31] ONUORA S. Namilumab improves RA symptoms[J]. Nat Rev Rheumatol, 2019, 15(6):318.
[32] SINGH S. JAK-STAT inhibitors: immersing therapeutic approach for management of rheumatoid arthritis[J]. Int Immunopharmacol, 2020, 86:1-27.
[33] CONIGLIARO P, TRIGGIANESE P, DE MARTINO E, et al. Challenges in the treatment of rheumatoid arthritis[J]. Autoimmun Rev, 2019, 18(7):706-713.
[34] SUSANNE A, NILS S, ULRIKE S, et al. JAK inhibition increases bone mass in steady-state conditions and ameliorates pathological bone loss by stimulating osteoblast function[J]. Sci Transl Med, 2020,12(530):eaay4447.
[35] YAMAOKA K. Tofacitinib for the treatment of rheumatoid arthritis: an update[J]. Expert Rev Clin Immunol, 2019,15(6):577-588.
[36] SATOSHI K, SHINGO N, KEI S, et al. Janus kinase inhibitor baricitinib modulates human innate and adaptive immune system[J]. Immunol, 2018, 9: 1510.
[37] MURAKAM K, KOBAYASHI Y, UEHARA S, et al. A Jak1/2 inhibitor, baricitinib, inhibits osteoclastogenesis by suppressing RANKL expression in osteoblasts in vitro[J]. PLoS One, 2017, 12(7):e0181126.
[38] SMOLEN J S, GENOVESE M C, TAKEUCHI T, et al. Safety profile of baricitinib in patients with active rheumatoid arthritis with over 2 years median time in treatment[J]. J Rheumatol, 2018, 46(1):7-18.
[39] PARMENTIER J M, JEFF V, CANDACE G, et al. In vitro and in vivo characterization of the JAK1 selectivity of upadacitinib (ABT-494)[J]. Bmc Rheumatol, 2018, 2(1):1-11.
[40] SERHAL L, EDWARDS C J. Upadacitinib for the treatment of rheumatoid arthritis[J]. Expert Rev Clin Immunol, 2019, 15 (1):13-25.
[41] KREMER J M, EMERY P, CAMP H S, et al. A phase IIb study of ABT-494, a selective JAK-1 inhibitor, in patientswith rheumatoid arthritis and an inadequate response to anti-tumor necrosis factor therapy[J]. Arthritis Rheumatol,2016, 68(12):2867-2877.
[42] MARKHAM A, KEAM S J. Peficitinib: first global approval[J]. Drugs, 2019, 79(8):887-891.
[43] TANAKA Y,TAKEUCHI T,TANAKA S,et al. Efficacy and safety of the novel oral Janus kinase(JAK) inhibitor,peficitinib(ASP015K),in aphase 3,double-blind,placebo-controlled,randomized study of patients with RA who had an inadequate response to Mmards[J]. Arthritis Rheumatol,2018, 70(suppl 9):983-984.
[44] JEGATHEESWARAN J, TURK M, POPE J E. Comparison of Janus kinase inhibitors in the treatment of rheumatoid arthritis: a systemic literature review[J]. Immunotherapy, 2019, 11(8):737-754.
[45] VAN R L, GALIEN R, EM V D A, et al. Preclinical characterization of GLPG0634, a selective inhibitor of JAK1, for the treatment of inflammatory diseases[J]. J Immunol, 2013, 191(7):3568-3577.
[46] TARRANT J M, GALIEN R, LI W, et al. Filgotinib, a JAK1 inhibitor, modulates disease-related biomarkers in rheumatoid arthritis: results from two randomized, controlled phase 2b trials[J]. Rheumatol Ther, 2020, 7(1):173-190.
[47] MAHAJAN S, HOGAN J K, SHLYAKHTER D, et al.VX-509 (decernotinib) is a potent and selective janus kinase 3 inhibitor that attenuates inflammation in animal models of autoimmune disease[J]. J Pharmacol Exp Ther, 2015,353(2):405-414.
[48] ELWOOD F, WITTER D J, PIESVAUX J, et al. Evaluation of JAK3 biology in autoimmune disease using a highly selective, irreversible JAK3 inhibitor[J]. J Pharmacol Exp Ther, 2017, 361(2):229-244.

基金

国家自然科学基金青年项目资助(81803946);陕西省教育厅2020年度重点科学研究计划协同创新中心项目资助(20JY010)
PDF(1047 KB)

Accesses

Citation

Detail

段落导航
相关文章

/